Author Archives: ep

China factory Poly-Vee Galvanized Steel Conveyor Roller with Great quality

Product Description

Poly-Vee Galvanized Steel Conveyor Roller 

Poly V driven makes the system high transport efficient and quiet operational. Polymer bearing house and end cap with precision ball bearing make the roller sturdy and durable. Suitable for light/medium duty load. Usable for friction move.

The dimensions of the conveyor roller depend on the shaft version. A sufficient axial play is already taken into account so that the actual lane width between side profiles is required for ordering.

W=Reference length/ordering length
E=Installation length, inside diameter between side profiles
L=Total length of the shaft

* 2mm PVC sleeve available for dia 50mm & 60mm tube

Contact us for more detailed information!

ABOUT US

MH Logistics Equipment Co., Ltd. is a significant force in the supply of conveyor roller & materials handling equipment. MH is a name stand for material handling and the first letter of name Mr. Lee (Founder) and his son. It contains a good wish to develop from generation to generation.

MH has many years of experience in supplying to a diverse range of industries, including mining, quarrying, mechanical & civil engineering, packaging, agricultural, and warehouse.
 
The company offers a vast range of products and services second to none, design, manufacture, and install many types of conveyor rollers, conveyor components, and conveyors.

WHY CHOOSE US?

 

QUALITY GUARANTEE

OUR PACKAGE

Contact us for more detailed information!

 

Screw Shaft Types

If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.

Machined screw shafts

Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids.
For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance.
Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find 1 to fit your needs. And since each size requires a different material, your choice of material is important as well.
In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.
screwshaft

Ball screw nuts

If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft.
When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the 2 ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw.
The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction.
The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These 2 features ensure that the ball and the nut meet at 2 points. You’ll be amazed by the results of the work of these ball screw nuts.
screwshaft

Threaded shank

Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress 2 pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as 1 with a fully threaded shank.
In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is 8 mm in diameter but has a thread pitch of 1 mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing.
The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well.
The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.

Round head

A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project.
A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice.
Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look.
Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to 1 mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
screwshaft

Self-locking mechanism

A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism.
The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw.
Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable.
Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.

China factory Poly-Vee Galvanized Steel Conveyor Roller   with Great qualityChina factory Poly-Vee Galvanized Steel Conveyor Roller   with Great quality

China factory Hot Rolled Mild Carbon Ms Steel Coil Q235 Q195 Ss400 with Best Sales

Product Description

  Carbon steel is an iron-carbon alloy with a carbon content of 0.5718% to 2.11%. Also called carbon steel. Generally also contains a small amount of silicon, manganese, sulfur, phosphorus. Generally, the higher the carbon content in carbon steel, the greater the hardness and the higher the strength, but the lower the plasticity.

Classification

(1) According to the purpose, carbon steel can be divided into 3 categories: carbon structural steel, carbon tool steel and free-cutting structural steel, and carbon structural steel is further divided into engineering construction steel and machine manufacturing structural steel;

(2) According to the smelting method, it can be divided into open hearth steel and converter steel;

(3) According to the deoxidation method, it can be divided into boiling steel (F), killed steel (Z), semi-killed steel (b) and special killed steel (TZ);
(4) According to the carbon content, carbon steel can be divided into low carbon steel (WC ≤ 0.25%), medium carbon steel (WC0.25%-0.6%) and high carbon steel (WC>0.6%);
(5) According to the quality of steel, carbon steel can be divided into ordinary carbon steel (higher phosphorus and sulfur content), high-quality carbon steel (lower phosphorus and sulfur content) and advanced high-quality steel (lower phosphorus and sulfur content) ) and extra high-quality steel.

  Common steel grades and uses:

08F, low mass fraction of carbon, good plasticity, low strength, used for stamping parts such as automobile and instrument housing;
20. Good plasticity and weldability, used for parts with low strength requirements and carburized parts, such as hoods, welding containers, small shafts, nuts, washers and carburized gears, etc.;
45, 40Mn, after quenching and tempering, the comprehensive mechanical properties are good, and it is used for mechanical parts with large force, such as gears, connecting rods, machine tool spindles, etc.;
60, 65Mn steel has high strength; it is used to manufacture various springs, locomotive wheel flanges, and low-speed wheels.
T7, T8: Make parts that withstand a certain impact and require toughness. Such as sledgehammers, punches, chisels, woodworking tools, scissors.
T9, T10, T11: Manufacturing tools that require high hardness and high wear resistance with low impact. Such as taps, small drills, dies, hand saw blades.
T12, T13: Make tools that are immune to impact. Such as files, scrapers, razors, measuring tools.

Product name Carbon Steel Coils
Place of Origin ZheJiang , China
Brand Name JHT
Application (1) Bridge steel plate (2) Boiler steel plate (3) Shipbuilding steel plate (4) Armor steel plate (5) Automobile steel plate (6) Roof steel plate (7) Structural steel plate (8) Electrical steel plate (silicon steel sheet) (9) Spring steel plate
Thickness As your requirement
Standard JIS, ASTM EN JIS DIN GB
Length 100mm-2500mm or as request
Certificate API, ce, RoHS, SNI, BIS, SASO, PVOC, SONCAP, SABS, sirm, tisi, KS, JIS, GS, ISO9001
Tolerance ±1%
Processing Service Bending, Welding, Decoiling, Punching, Cutting
Delivery Time 8-14 days
Type Hot Rolled
Shape Coils

Q: Are you a manufacturer?
A: Yes , we are a manufacturer,angang metal is a famous company that started earlier in China’s steel industry, with annual sales of more than 10 million tons.

Q:Can we visit your factory ?
A:Warmly welcome once we have your schedule we will pick you up .
Q: Do you have quality control?
A: Yes, we have gained BV, SGS authentication.
Q: Can you arrange the shipment?
A: Sure, we have permanent freight forwarder who can gain the best price from most ship company and offer professional service.
Q: How long is your delivery time?
A: Generally it is 7-14 days if the goods are in stock. or it is 25-45 days if the goods are not in stock, it is according to quantity.
Q:How can we get the offer?
A:Please offer the specification of the product,such as material,size,shape,etc.So wecan give the best offer.
Q:Can we get the some samples?Any charges?
A:Yes,you can get available samples in our stock.Free for real samples,but customers need to pay the freight cost.
Q: How do you make our business long-term and good relationship ?
A: 1.We keep good quality and competitive price to ensure our customers’ benefit.
   2.We respect every customer as our friend and we sincerrly do business and make friends with them, no matter where they come from.

What Are Screw Shaft Threads?

A screw shaft is a threaded part used to fasten other components. The threads on a screw shaft are often described by their Coefficient of Friction, which describes how much friction is present between the mating surfaces. This article discusses these characteristics as well as the Material and Helix angle. You’ll have a better understanding of your screw shaft’s threads after reading this article. Here are some examples. Once you understand these details, you’ll be able to select the best screw nut for your needs.
screwshaft

Coefficient of friction between the mating surfaces of a nut and a screw shaft

There are 2 types of friction coefficients. Dynamic friction and static friction. The latter refers to the amount of friction a nut has to resist an opposing motion. In addition to the material strength, a higher coefficient of friction can cause stick-slip. This can lead to intermittent running behavior and loud squeaking. Stick-slip may lead to a malfunctioning plain bearing. Rough shafts can be used to improve this condition.
The 2 types of friction coefficients are related to the applied force. When applying force, the applied force must equal the nut’s pitch diameter. When the screw shaft is tightened, the force may be removed. In the case of a loosening clamp, the applied force is smaller than the bolt’s pitch diameter. Therefore, the higher the property class of the bolt, the lower the coefficient of friction.
In most cases, the screwface coefficient of friction is lower than the nut face. This is because of zinc plating on the joint surface. Moreover, power screws are commonly used in the aerospace industry. Whether or not they are power screws, they are typically made of carbon steel, alloy steel, or stainless steel. They are often used in conjunction with bronze or plastic nuts, which are preferred in higher-duty applications. These screws often require no holding brakes and are extremely easy to use in many applications.
The coefficient of friction between the mating surfaces of t-screws is highly dependent on the material of the screw and the nut. For example, screws with internal lubricated plastic nuts use bearing-grade bronze nuts. These nuts are usually used on carbon steel screws, but can be used with stainless steel screws. In addition to this, they are easy to clean.

Helix angle

In most applications, the helix angle of a screw shaft is an important factor for torque calculation. There are 2 types of helix angle: right and left hand. The right hand screw is usually smaller than the left hand one. The left hand screw is larger than the right hand screw. However, there are some exceptions to the rule. A left hand screw may have a greater helix angle than a right hand screw.
A screw’s helix angle is the angle formed by the helix and the axial line. Although the helix angle is not usually changed, it can have a significant effect on the processing of the screw and the amount of material conveyed. These changes are more common in 2 stage and special mixing screws, and metering screws. These measurements are crucial for determining the helix angle. In most cases, the lead angle is the correct angle when the screw shaft has the right helix angle.
High helix screws have large leads, sometimes up to 6 times the screw diameter. These screws reduce the screw diameter, mass, and inertia, allowing for higher speed and precision. High helix screws are also low-rotation, so they minimize vibrations and audible noises. But the right helix angle is important in any application. You must carefully choose the right type of screw for the job at hand.
If you choose a screw gear that has a helix angle other than parallel, you should select a thrust bearing with a correspondingly large center distance. In the case of a screw gear, a 45-degree helix angle is most common. A helix angle greater than zero degrees is also acceptable. Mixing up helix angles is beneficial because it allows for a variety of center distances and unique applications.
screwshaft

Thread angle

The thread angle of a screw shaft is measured from the base of the head of the screw to the top of the screw’s thread. In America, the standard screw thread angle is 60 degrees. The standard thread angle was not widely adopted until the early twentieth century. A committee was established by the Franklin Institute in 1864 to study screw threads. The committee recommended the Sellers thread, which was modified into the United States Standard Thread. The standardized thread was adopted by the United States Navy in 1868 and was recommended for construction by the Master Car Builders’ Association in 1871.
Generally speaking, the major diameter of a screw’s threads is the outside diameter. The major diameter of a nut is not directly measured, but can be determined with go/no-go gauges. It is necessary to understand the major and minor diameters in relation to each other in order to determine a screw’s thread angle. Once this is known, the next step is to determine how much of a pitch is necessary to ensure a screw’s proper function.
Helix angle and thread angle are 2 different types of angles that affect screw efficiency. For a lead screw, the helix angle is the angle between the helix of the thread and the line perpendicular to the axis of rotation. A lead screw has a greater helix angle than a helical one, but has higher frictional losses. A high-quality lead screw requires a higher torque to rotate. Thread angle and lead angle are complementary angles, but each screw has its own specific advantages.
Screw pitch and TPI have little to do with tolerances, craftsmanship, quality, or cost, but rather the size of a screw’s thread relative to its diameter. Compared to a standard screw, the fine and coarse threads are easier to tighten. The coarser thread is deeper, which results in lower torques. If a screw fails because of torsional shear, it is likely to be a result of a small minor diameter.

Material

Screws have a variety of different sizes, shapes, and materials. They are typically machined on CNC machines and lathes. Each type is used for different purposes. The size and material of a screw shaft are influenced by how it will be used. The following sections give an overview of the main types of screw shafts. Each 1 is designed to perform a specific function. If you have questions about a specific type, contact your local machine shop.
Lead screws are cheaper than ball screws and are used in light-duty, intermittent applications. Lead screws, however, have poor efficiency and are not recommended for continuous power transmission. But, they are effective in vertical applications and are more compact. Lead screws are typically used as a kinematic pair with a ball screw. Some types of lead screws also have self-locking properties. Because they have a low coefficient of friction, they have a compact design and very few parts.
Screws are made of a variety of metals and alloys. Steel is an economical and durable material, but there are also alloy steel and stainless steel types. Bronze nuts are the most common and are often used in higher-duty applications. Plastic nuts provide low-friction, which helps reduce the drive torques. Stainless steel screws are also used in high-performance applications, and may be made of titanium. The materials used to create screw shafts vary, but they all have their specific functions.
Screws are used in a wide range of applications, from industrial and consumer products to transportation equipment. They are used in many different industries, and the materials they’re made of can determine their life. The life of a screw depends on the load that it bears, the design of its internal structure, lubrication, and machining processes. When choosing screw assemblies, look for a screw made from the highest quality steels possible. Usually, the materials are very clean, so they’re a great choice for a screw. However, the presence of imperfections may cause a normal fatigue failure.
screwshaft

Self-locking features

Screws are known to be self-locking by nature. The mechanism for this feature is based on several factors, such as the pitch angle of the threads, material pairing, lubrication, and heating. This feature is only possible if the shaft is subjected to conditions that are not likely to cause the threads to loosen on their own. The self-locking ability of a screw depends on several factors, including the pitch angle of the thread flank and the coefficient of sliding friction between the 2 materials.
One of the most common uses of screws is in a screw top container lid, corkscrew, threaded pipe joint, vise, C-clamp, and screw jack. Other applications of screw shafts include transferring power, but these are often intermittent and low-power operations. Screws are also used to move material in Archimedes’ screw, auger earth drill, screw conveyor, and micrometer.
A common self-locking feature for a screw is the presence of a lead screw. A screw with a low PV value is safe to operate, but a screw with high PV will need a lower rotation speed. Another example is a self-locking screw that does not require lubrication. The PV value is also dependent on the material of the screw’s construction, as well as its lubrication conditions. Finally, a screw’s end fixity – the way the screw is supported – affects the performance and efficiency of a screw.
Lead screws are less expensive and easier to manufacture. They are a good choice for light-weight and intermittent applications. These screws also have self-locking capabilities. They can be self-tightened and require less torque for driving than other types. The advantage of lead screws is their small size and minimal number of parts. They are highly efficient in vertical and intermittent applications. They are not as accurate as lead screws and often have backlash, which is caused by insufficient threads.

China factory Hot Rolled Mild Carbon Ms Steel Coil Q235 Q195 Ss400   with Best SalesChina factory Hot Rolled Mild Carbon Ms Steel Coil Q235 Q195 Ss400   with Best Sales

China best S33 Fiberglass Material FRP Dome Plate Conical Nut Anchor Bolt near me manufacturer

Product Description

Quick Details
Place of Origin: China (Mainland)                             Brand Name: XIHU (WEST LAKE) DIS.
Type: Solid/ hollow / self drilling                              Product Name: FRP Rebar
Name: High Modulus CZPT frp rebar                       Category: hollow grouting or solid anchor bolt
Application: Construction , Coal Mine, Tunnel, Metro, slope, foundation pit, etc.
Model Number: FRP glass full screw resin bolt                  Technique: Pultrusion winding
Surface treatment: Thread ,Anti-static/ sand-coated /customize      Feature: Light Weight
Dimensions: 4-55mm /customizable                           Material: Fiberglass &Resin
Chemical compositon: Fiberglass & unsaturated resin / expoxy      Rod density: 1.6 – 2.1g / m³
Color: Black\white\yellow\red\green Blue\Grey or Customized      Length: 1-12M or Customized
Thread: Left or Right Customized                              Ultimate Strain: 2%
Supply Ability: 3000 Meter/Meters per Day                      Anti static: 3*10000000 Ω
Tensile strength: >600MPa                                    E-modulus: 40GPa .
Shear strength: 150MPa                                      Certificate: ISO9001-2000,GB/T19001-2008
 
 
Fiberglass Rebar adopt glass fiber as reinforced materials and  polyester resin as basic materials, through Pulled by specific traction machine, be solidified glass fiber reinforced plastic rod body with full thread under high pressure and high temperature by preformed matched die . It is made up of fiberglass anchor rod plus resin anchoring agent, tray and nut.
The Solid Bolt is used in Mining, Tunneling and Civil Engineering widely. It provides more possibilities as an alternative to metal. The GFRP Solid Bolt is manufactured with high quality GFRP material(Glassfiber Reinforced Polymer). The GFRP Solid Bolt have a high tensile load and bearing capacity with accessories, but the weight is only 1 quarter of metal product.
 
Applications    
Fiber glass rebar, FRP rebar, GFRP rebar, CZPT rebar,reinforcing bar with diameter from 4mm to 55mm.manufactures CZPT Rebars by combining the pultrusion process and an in-line winding & coating process for the outside sand surface.  As compared to con-ventional steel rebars, CZPT rebars should be a suitable alternative to steel reinforcing in:
 ·Architectural Concrete: cast stone, architectural cladding, balusters, column facades, window lentils, architectural precast elements, hand railing, and statuary and fountains, etc.
 ·Concrete exposed to de-icing salts in: bridge decks, railroad grade crossings, median barriers, parking garage elements, and salt storage facilities, etc.
 Concrete exposed to marine salts in: seawalls, water breaks, buildings & structures near waterfront, CZPT operations, and floating marine docks, etc.
 ·Applications Subjected to Other Corrosive Agents: Wastewater treatment plants; petrochemical plants; pulp/paper mills; liquid gas plants; pipelines / tanks for fossil fuel; cooling towers; chimneys; mining operations of various types; nuclear power and dump plants.
 ·Applications Requiring Low Electric Conductivity or Electromagnetic Neutrality: Aluminum and copper smelting plants; manholes for electrical and telephone communication equipment; bases for transmission / telecommunication towers; airport control towers; magnetic resonance imaging in hospitals; railroad crossing sites, and specialized military structures.
 ·Tunneling / Boring Applications Requiring Reinforcement of Temporary Concrete Structures: Structures including mining walls; underground rapid transit structures and underground vertical shafts. 
 ·Weight Sensitive Structures: Concrete construction in areas of poor load bearing soil conditions, remote geographical locations, sensitive environmental areas, or active seismic sites posing special issues that the use of lightweight reinforcement will solve. 
 ·Thermally Sensitive Applications: Apartment patio decks; thermally insulated concrete housing and basements; thermally heated floors and conditioning rooms.  
1. Mining support
2. Face bolting
3. Soil nail
4. Slope stabilization
5. Permanent application
6. Temporary support
7. Subway tunnel
8. Building construction
9. Seawall damming
10. Rock supporting
11. foundation pit wall
12. Port of foundation pit
13. Roadway support
14.Tunnel construction, etc.
 
Advantages:
1. All-thread (stronger bonding with the grouting material)
2. Low weight (1/4 weight of steel anchor bolt)
3. High durability ( unaffeced by acid rain, salt water, and most chemicals)
4. Strong adhesion and anchorage force
5. High corrosion resistance , anti-static, High rotproofness
6. High torque resistance
7. 100+ years service life
8. Easy handling due to low weight
9. Fire retardant
10. Impact resistant
11. Nonconductive and thermal insulation
12. Non-magnetic electromagnetic transparency
13. Dimensional stability, Bright color
14. Low-maintenance
15. Cuttability, easy cutting
16. High torsion resistance
17. Anti-static coating (optionally)
18. Long service life
19. High tensile load
20. Deformation patterns are the same as with steel
21. Coefficient of thermal expansion more similar to concrete than that of steel
22. Direct production costs lower than similar steel bolt
23. Strongly adapt to the environment, and no emmiting the electromagnetic wave
 
FRP Rebar Other Features:
Non-flammable:  It is non-flammable and has high thermal insulation;
Cutability  :  It avoids damages to cutter heads, and does not delay excavation
Save cost : Use this material as reinforcing bars for road and bridge, could reduce Secondary repair cost.
 
 Accessory products
 1. Anchor bolt : the important construction of the assembly, plays a major role in the anchor and
support.
2. The head of the anchor drill: barb can be bolt positioning in the drilled holes, the middle rod body
good.
3. Coupling: easy to manage, unlimited application range.
4. Anchor plate : bear greater stress of surrounding rock.
5. Nut: the surrounding rock stress concentrated on the pad.
6. GFRP Plate, GFRP Nut , GFRP Coupler, Anchor Drill Bit, steel Nut, Steel coupler, steel plate, other types are available as requested
7. Rebar : the important construction of the assembly, plays a major role in the anchor and support.
8. The head of the anchor drill: barb can be bolt positioning in the drilled holes, the middle rod body good.
9. Coupling: easy to manage, unlimited application range.
10. Anchor plate : bear greater stress of surrounding rock.
11. Nut: the surrounding rock stress concentrated on the pad.
Glass reinforced plastic anchor rod with circular arc tooth profile FRP nut thread suit, 
glass fiber reinforced plastic nut near 1 end of the glass fiber reinforced plastic pallet 
stretch narrow neck formation, glass fiber reinforced plastic tray set it on the neck of the glass fiber reinforced plastic nut, glass reinforced plastic anchor rod in the middle of the paragraph to the polished rod structure. The utility model tensile, shear and torsion strength is strong, the production cost is low,  the supporting effect is good, can be applied to all have the special circumstances of flammable and explosive.
 

 
Technical Data

FRP Rock Bolt Test Unit MGSL18 NGSL20 MGSL22 MGSL24 MGSL27
Rod Surface Uniform appearance, no bubble and flaw
Nominal Diameter/mm 18 20 22 24 27
Tensile load/KN 160 210 250 280 350
Tensile Strength/MPa 600 600 600 600 600
Shearing strength/MPa 150 150 150 150 150
Torsion/Nm 45 70 100 150 200
Antistatic 3*107 3*107 3*107 3*107 3*107
 
 
Flame Resistance
 
Flaming
s ≤6 ≤6 ≤6 ≤6 ≤6
s ≤2 ≤2 ≤2 ≤2 ≤2
 
Flaming burning
s ≤60 ≤60 ≤60 ≤60 ≤60
s ≤12 ≤12 ≤12 ≤12 ≤12
Plate Plate load strength/kN 70 80 90 100 110
Central diameter/mm 28±1 28±1 28±1 28±1 28±1
Nut Nut load strength/kN 70 80 90 100 110

 
 
FRP bolts/Fiber reinforced plastics bolts/GFRP Anchor Rock Bolts Parameter

Unit   Hollow Rock bolt Self-drilling Rock bolt
Diameter mm 12/25 12/28 32/15 12/25 12/28 32/15
External mm 25 28 32 25 28 32
cross section mm^2 345 450 563 345 450 563
Thread distance mm 10 10 10 12.7 12.7 12.7
Thread direction   right right right left left left
Tensile Load kN 230 300 380 250 330 400
Tensile strength Mpa 650 650 650 650 650 650
Torsion Nm 80 110 200 120 200 250
Shear strength MPa 150 150 150 150 150 150
Elongation % 2.5 2.5 2.5 2.5 2.5 2.5
E-modulus Gpa 40 40 40 40 40 40
weight g/m 642 896 1156 642 896 1156

 
 
FRP rock bolt equipment
1. Productive technology: full thread FRP rock bolt body once molding
2. Production speed: fast speed, can produce ≥1.5 M per minute
3. Rod body torsion: big torsion, different rod body the torsion can be as high as 60NM-160NM
4. Rod body and nut cooperate closely, the coverall performance is good
5. Big bearing capacity, tray and nut is patented product, the maximum bearing capacity can reach more than 150KN
6. Long production time: it can continuously all day long production, trouble-free
7. Formula science, save material, the product quality is stable
8. Equipment performance in the domestic similar products leading level, simple operation, easy to control, lifelong technical
Method of application for FRP rock bolt
After the roofbolter finished drilling, remove the drill pipe, make the six-party of rock bolt installation machine insert jumbolter drill pipe connection, then make the lever genus part of compression nut insert the rock bolt installation machine, make anchoring agent into the rock bolt holes, then use the rock bolt bracing anchoring agent, at this time do propulsion leg movement, drilling machine motor not rotating, anchoring agent will be sent to the bottom of the hole, at this point to start drilling machine motor rotating, rotating rock bolt to stir anchoring agent, when the FRP rock bolt reached the bottom of the hole, stop the machine, drilling machine fast rotating to stirring anchoring agent, stirring time is set time of anchoring agent (usually 10 s ~ 15 s ), close the drilling machine, stop rotating, according to the anchoring agent curing time, general stop 30 s ~ 45 s, after anchoring agent curing, ant then make drilling machine to start rotating, screw up the nut for bottom of rock bolt, at this time drilling machine motor stop rotating, rock bolt install end
Safety matters need attention
1. When installation the rock bolt, not allowed holding the rock bolt, lest produce an accident
2. Finished the rock bolt, when the drilling machine drops, can’t make the hand on the gas leg, prevent hurting hands
3. When use the jumbolter to installation tray and nut, must master the use of the drilling machine and anchoring agent, when install the nut must immediately stop the machine, otherwise it will damage FRP bolt
4. Please use the resin bolt anchoring agent that complies with safety srandards
5. Transportation store
6. In the process of product transportation shall not be cast and throw.
7. The rod body should be stored in a cool and dry place, rod body storage time no more than 1 year.
8. End of the anchoring can not contaminated with oil, rod body tail thread shall not damage
 
Technical parameters of the product

Diameter
(mm)
Length
(mm)
Pallet dimension
(mm)
Standard value of tensile strength(MPa) Ultimate load of the bolt
(KN)
Bearing capacity of end connection and whorl (KN) Bolt torque
(N.m)
16 1200~1800 120×120×6 ≥300 80 ≥50 ≥40
18 1200~2000 120×120×10 ≥300 100 ≥60 ≥40
20 1200~3000 140x140x8
150×150×8
≥300 120 ≥70 ≥40
22 1600~3000 150×150×10
170x 170x 10
≥300 140 ≥80 ≥40
24 1800~3000 150×150×10 ≥300 160 ≥90 ≥40

 
   Hollow grouting bolt characteristics
 1. The function of bolt and grouting pipe is combined, when grouting, it is grouting pipe, after grouting,
    no need to dial out to become a bolt.
2. The hollow design enables the anchor rod to realize the grouting pipe function, avoids the mortar
    loss which the traditional construction craft pipe grouting causes.
3. Grouting full, and can realize the pressure grouting, improve the quality of the project.
4. Because of the role of accessories, the middle of the rod is very good, mortar can anchor the whole
    body wrapped, to avoid the risk of corrosion, to achieve long-term support purposes.
5. Convenient installation, without on-site processing of thread, you can easily install the plate, nut.
6. Combined with the special bolt grouting pump and grouting technology, it is the anchor system
    which has solved many problems of traditional anchor support at home.
 
Technical Index of Fiberglass Rebar

Diameter(mm) Cross Section(mm2) Density(g/cm3) Weight(g/m) Ultimate Tensile Strength(MPa) Elastic Modulus(GPa)
3 7 2.2 18 1900 >40
4 12 2.2 32 1500 >40
6 28 2.2 51 1280 >40
8 50 2.2 98 1080 >40
10 73 2.2 150 980 >40
12 103 2.1 210 870 >40
14 134 2.1 275 764 >40
16 180 2.1 388 752 >40
18 248 2.1 485 744 >40
20 278 2.1 570 716 >40
22 355 2.1 700 695 >40
25 478 2.1 970 675 >40
28 590 2.1 1195 702 >40
30 671 2.1 1350 637 >40
32 740 2.1 1520 626 >40
34 857 2.1 1800 595 >40
36 961 2.1 2044 575 >40
40 1190 2.1 2380 509 >40

 
Technique chart:

 

 
Packaging & Delivery
Packaging: Bundle with pallet, Bolts packed in bundles and accessories packed in cartons.
Packed with steel wires or other way as customers requirement.
Delivery Time: within 20 days
Lead Time ::within 20 days
 
 
Our Services
    As 1 of the leading suppliers of pultrusion fiberglass reinforced polymer CZPT products, we can provide you FRP tubes, Channel, I-beam, angle, Rebar, rods,Garden stakes, gratings. 
     Customized shape service is available from us, just send us CAD drawing or contact us direatly.  For moulds, TT 100% before making; for products, TT 30% in advance, 70% balance payment on receiving bill of lading by Email or before delivery.
    Researches and development team by knowing the importance of the FRP usage in industry and construction , have successfully conducting different researches and studies projects.
Design and engineering services has been given idea from customers, and make out the thing you imaged. Specially developing on new machinary. 
Istallation and construction team is experienced with installation, commissioning and training service at cutomer’s factory. In this way, the customer is CZPT to handle management of equipment themsleves soon. 
Mantiance service is applied when customer cann’t solve problem themselves. Mainly at equipment, software, tools…etc.
Technical support is the most importance in production. as long as frp developing, new and advanced process, material, equipments appeared. We are  giving the eyes on the world frp relatived news and supply customer advanced service.
 
 
FAQ
Q: Are you a trading company or factory?
A: our factory is a FRP manufacturer in China.
Q: Can you factory customize the machine for clients?
A: yes, we can. 
Q: what are you payment terms?
A: Normally, 50% as the deposit first by T/T, the rest 50% will be paid before shipping by T/T.
Q: How about after-sales service?
A: 1 year free warranty, Lifetime technical service support.
 
Please Contact Us
 Miss: lydia
 
http://chinainsulation
 
 
 
 

 

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China best S33 Fiberglass Material FRP Dome Plate Conical Nut Anchor Bolt   near me manufacturer China best S33 Fiberglass Material FRP Dome Plate Conical Nut Anchor Bolt   near me manufacturer

China Standard Sm Taper Locked Mechanical Flange wholesaler

Product Description

We can supply Taper bore flange,; Taper Locked Mechanical Flange SM,; Taper Lock Bolt-on Hub
This mechanical flange are designed for use with the universally accepted taper lock bush.; They provide a convenient means of securing fan rotors,; impellers,; agitators and other devices which must be fastened firmly to shafts.;
Adaptors for Taper Lock bushes are available for use in parallel bored components,; either keyed (KM); or plain (PM); thereby eliminating the need to drill,; tap and taper-bore.;
Flangle adapter and taper bored to receive standard Taper Lock bushes.; The shouldered outer diameter provides a convenient means of welding hubs into fan rotors,; steel pulleys,; plate sprockets,; impellers,; agitators and many other devices which must be firmly fastened to the shaft.;
More than 20 years advanced technology and experience of us will give strong support for the v belt pulley you need.; We will understand your need of product quickly,; and give quick respond and good service.; A lot of cases of our products will show you that it worth your trust.;
Under the full quality control system,; our products go through the precise product line and strict testing process.; We have excellent working flow and standard to ensure stability,; products reliable enough for using.;
Take our scale economy,; raw material superiority,; and sincerity for clients to account,; our price has a great competitiveness.; They are good value and cost effective than your imagine.;
We sincerely hope establishing long and friendly business relations with clients from all over the world.; Our goal is not just providing product,; but also providing a complete solution including product design,; tooling,; fabrication and service for our customers to achieve their upmost satisfaction.;

Place of Origin:; China
Brand Name:; MW
Certification:; ISO
Model Number:; SPA,; SPB,; SPC,; SPZ,; AK,; AKH,; 2AK,; 2AKH,; BK,; BKH,;2BK,; 2BKH,; 3BK

Screw Shaft Features Explained

When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.

Threads

The major diameter of a screw thread is the larger of the 2 extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of 1 sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
screwshaft

Lead

In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around 80 percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.

Pitch

The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of 1 wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the 2 terms and discuss how they relate to 1 another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.

Helix angle

The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
screwshaft

Size

The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to 16 inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of 2 inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
screwshaft

Shape

Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by 2 features: its major diameter, or distance from the outer edge of the thread on 1 side to the inner smooth surface of the shaft. These are generally 2 to 16 millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of 2 opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the 2 main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.

Lubrication

In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.

China Standard Sm Taper Locked Mechanical Flange   wholesaler China Standard Sm Taper Locked Mechanical Flange   wholesaler

China Best Sales Shanghai Raise Air Cooled Single Cylinder Diesel Engine 186f 6.8kw Power with Good quality

Product Description

Product Description:

Model Technical Parameters
RZ186FA/E Engine form: single cylinder vertical, 4 stroke air cooling
Cylinder diameter × stroke: 86 × 72
Displacement: 418cc
Maximum power: 6.8KW
Speed: 3600rpm
Lubrication method: pressure splash composite
Fuel tank capacity / working time: 4.8L / 2.0 hours
Fuel type: summer 0#, winter-10#
Lubricant model: SAE15W/30
Lubricating oil capacity: 1.7L
Start mode: hand start / electric start
Battery capacity: 20Ah
Output: threaded shaft / taper shaft / keyway shaft
Packing size: 520 × 520 × 565 (carton)
Net weight / gross weight: 48/51 Kgs

RAISE Advantage:

Company Information:

Certifications:

FAQ:
Q: How can I get the sample to check your quality?

A: After price confirmation, you can require for samples to check our product’s quality. If you just
     need a blank sample to check the design and quality. We will provide you sample  as long as
     you afford the express freight and sample cost.

Q: What can I get the price?

A: We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price,
     please tell us in your email so that we will regard you inquiry priority.

Q: What is your term of delivery?

A: We accept EXW, FOB ZheJiang or FOB HangZhou. You can choose the 1 which is the most
     convenient or cost effective for you.

 
Q: What about the lead time for the mass production?

A: Honestly, it depends on the order quantity and the season you place the order.
 

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China Best Sales Shanghai Raise Air Cooled Single Cylinder Diesel Engine 186f 6.8kw Power   with Good qualityChina Best Sales Shanghai Raise Air Cooled Single Cylinder Diesel Engine 186f 6.8kw Power   with Good quality

China Best Sales Smtso-M2-6dt, Surface Mount Standoff with Hot selling

Product Description

HangZhou Manufacturer CZPT Standoffs Fasteners for PCB

In-sail/Xihu (West Lake) Dis.m is dedicated to manufacturing of precision components and the design, fabrication of engineering specialty fasteners and fastening solution development.
Manufacturing Capability
We have powerful manufacturing capability, our automatic lathes, CNC lathes, CNC machining centers, stamping machines and cold heading machines plus auxiliary equipments like milling machine, grinding machine, EDM and the cooperation of our partners, we are CZPT to support every different components regardless of the prototyping or series production.

Auto Lathe Turning
The single shaft cam-base automatic lathes are capable of massive production of brass, aluminum alloy, stainless steel components.
Production range: O. D. 0.5-15
CNC Milling
4-axis and 5-axis machining centers are capable of complex structural parts.
Production range: 800X600
Screw Heading & Rolling
The screw production lines finish the cold heading and thread rolling for small carbon steel or stainless steel screws.
Production range: M0.8-M6 or equivalent sized imperial screws
Stamping
Stamping machines perform the blanking, punching, blending, drawing. Currently we are working on simple stamping jobs.
Production range: 200T max.
 

Material Aluminum alloy,Brass,Stainless Steel,Carbon steel,according to customer’s requirement
Finish Milled /Tin plating, copper-plating,hot-dip galvanizing, black oxide coating,red anodized,black anodized,painting,
 powdering,rust preventive oil, titanium alloy galvanized, silver plating, plastic, electroplating, anodizing etc.
Testing Equipment CMM,Projector,Pull Tester,Automatic Optic Inspector,Projecting apparatus
Salt Spray Test, Durometer, and Coating Analyzer,Tensile Machine
Management System ISO9001:2008
Certification SGS,RoHS,Material Certication,PPAP
Production Capability Auto-lathe turning:ODΦ0.5-20mm,Tol.±0.01mm
CNC lathe turning:ODΦ0.5-250mm,Tol.±0.005mm
CNC Milling:800x600mm(LxW),Tol.±0.05mm
Grinding:Tol.±0.002mm
Screw heading & rolling:Metric 0.8-M6,Unified Imperial#0-1/4”
Stamping:200T max
Lead Time 5-15 working days
Samples Welcome
Delivery term By DHL,UPS,TNT,FedEx,EMS,By Ocean,By Air
Warranty Replacement at all our cost for rejected products


Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China Best Sales Smtso-M2-6dt, Surface Mount Standoff   with Hot sellingChina Best Sales Smtso-M2-6dt, Surface Mount Standoff   with Hot selling

China wholesaler Stacked Pressure Reducing Valve Zdr6da1-40b/75ym Zdr6da1-40b/150ym Zdr6da1-40b/210ym with high quality

Product Description

Our company supply ZheJiang HuaDe series hydraulic valves, flow valves and accessories series, balance valve FD series, pressure control valve series, two-way cartridge valve series, proportional valve series, proportional valve proportional amplifier series and support series, oblique shaft plunger pump and motor,etc.
All models and specifications are complete, if you need detailed PDF parameters, please contact our customer service.

 

Our Company Service

1) We can help buyers design specific products or produce products according to buyers’design

2) We can print logo according to buyers’ requirement

3)We has exported to many countries,such as Korea, USA, German, etc.

Customer Service

1. You may email us through the Alibaba messaging system if you have a question

or would like to submit a comment.

2. Generally, email will be responded to within 24 hours; except on every Sunday

and holidays. We will reply as soon as we back in office.

2. We will send you tracking information to the e-mail address you have registered with Alibaba.

3. If you don’t see what you are looking for, just send us an e-mail with picture/picture

and we will be glad to help you.

4. Positive feedback is very important to us.

 

Packaging & Shipping
Delivery Details

Delivery time depends on the destination and other factors, it may up to 7 work days.

In order to ensure you receive you order tax free upon import, we will declare it as a “Sample”with a lower value.This lower price does not reflect the total price you paid.

After we ship the goods, we will email you the shipping information, as well as tracking number.

 

FAQ
Questions you maybe inquiry

Q1:Could you custom products?

We can manufacture it according to your drawings or samples.

Q2: I want to buy your products, how can I pay?

A :You can pay via T/T , WEST UNION or other payment terms we reach agreement.

Q3: How can you guarantee the quality?

A: One year’s warranty against B/L date.

If You meet with quality problem, we promise to responsible for it.

Q4: If we don’t find what we want on your website, what should we do?

A: You can email us the descriptions and pictures of the products you need, We will check whether we can make it.

Q5: Can we buy 1 pc of each item for quality testing?

A: Yes, we understand quality test is important and we are glad to send 1pc for quality testing.

Q6: What is the lead time?

A: For this product, normally 3 days,3 days and lead time is calculated from the day we receive your deposit.

Exact time is determined by factory schedule.
 

Quantity(Set) 1 – 10 11 – 100 >100
Est. Time(days) 3 15 To be negotiated

Our customer say:

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China wholesaler Stacked Pressure Reducing Valve Zdr6da1-40b/75ym Zdr6da1-40b/150ym Zdr6da1-40b/210ym   with high qualityChina wholesaler Stacked Pressure Reducing Valve Zdr6da1-40b/75ym Zdr6da1-40b/150ym Zdr6da1-40b/210ym   with high quality

China factory SS316 /304/201 1000psi 3PC Full Bore Ball Valve with ISO5211 Mounting Pad and Locking Device Bw/Sw/NPT/Bsp Bare Shaft near me shop

Product Description

Features And Benefits

  1. Full port, 1/4″~4″ (DN8~DN100)
  2. W. P.: 1000 WOG(PN63)
  3. W. T.:-20ºC ~200ºC (-4ºF~392ºF)
  4. Investment casting
  5. Blow-out proof stem
  6. Live-loading device
  7. Locking device
  8. Anti-static device
  9. ISO 5211 Direct Mounting pad
  10. Automation accessories (option)
  11. Connection: NPT, DIN2999,BSP,G,SOCKET WELD,BUTT WELD

 

ITEM PARTS MATERIAL
1 BODY SS304/SS316 ASTM A216-WCB
2 CAP
3 BALL ASTM SS304/SS316-CF8M
4 SEAT PTFE/RTFE
5 SEAL PTFE
6 STEM SS304/SS316
7 O-RING  
8 PACKING PTFE
9 THRUST WASHER
10 GLAND RING AISI 304
11 BELLEVILLE WASHER AISI 301
12 LOCKING WASHER AISI 201
13 LOCKING DEVICE
14 STEM NUT
15 HANDLE STAINLESS STEEL
16 HANDLE SLEEVE PVC
17 BOLT AISI 201
18 NUT
19 SPRING WASHER

 

DN d L H H1 H2 W S D1 D2 R1 R2 ISO 5211 Torque (N-M) Weight (kg)
8 11.6 65 61 7.5 35.3 114.5 9 36 42 2.75 2.75 F03 / F04 7
10 12.5 65 61 7.5 35.3 114.5 9 36 42 2.75 2.75 F03 / F04 7
15 15 65 62.7 7.1 36.4 114.5 9 36 42 2.75 2.75 F03 / F04 7 0.6
20 20 75 65.1 7.3 39.5 114.5 9 36 42 2.75 2.75 F03 / F04 9 0.7
25 25 85 76.5 11 49 140 11 42 50 2.75 3.5 F04 / F05 15 1.1
32 32 101 82 11.5 54.2 140 11 42 50 2.75 3.5 F04 / F05 18 1.7
40 38 112 102 12.4 64.6 172 14 50 70 3.5 4.5 F05 / F07 25 2.6
50 50 130 110.1 13.6 72.5 172 14 50 70 3.5 4.5 F05 / F07 35 3.7
65 63 162 127.3 16.3 92 325 17 70 102 4.5 5.5 F07 / F10 55 7.1
80 76 188 136.3 16.3 100 325 17 70 102 4.5 5.5 F07 / F10 70 10.2
100 96 224 142.5 20.5 130 325 22 102 125 5.5 6.5 F10 / F12 90 19.4

FAQ 
1 Are you a factory or trading company?
We are a factory specialized in manufacturing valves and ftting over 10 years.We have our own stainless steel foundry in ZheJiang province.
And we have got ISO9001&TS certificate of Manufacturing and processing of valves and fttings.

2 Where are the main markets for your products?
We hope to make business with companies from all over the world. And for now, our valves and fttings have
Been exported to especially in North America, South America, South Asia, Europe and Middle East.

3 Do you have a minimum quantity of the products?
No, we will build business with you with even 1PC. We believe this cooperation will be a long- term relationship for our high quality, competitive price and good after-sale service.

4 Are samples available to be sent with free?
It depends on what product you need. There are hundreds of products we sell. You can contact us for particular answer.

5 Can you print our Logo on the valves?
Yes, we can totally produce products according to your special request, even manufacture it base on your drawing.

6 What is your lead time?
It’s around 15 days normally. If we have the products in stock, it will be about 1 week.

7 what is your payment term?
T/T 30% down payment, balance to be paid before shipment.

8 How can I check your factory situation w hile it’s difficult for me to come to China?
We have photos and videos on our website and , It shows every step of the manufacturing.

9 How can you guarantee the quality of products?
Firstly, we have the numerical control device to manufacture products accurately. Then our quality inspectors will test products 1 by 1 to make sure every valve or ftting we sell is qualified and release the test mill certificate. If possible, We can also send you the sample for checking. Regarding the details, we can discuss if you want to know more about it.

Jacky
ZHangZhouG LONGGONG VALVE TECHNOLOGY CO.,LTD
Web:wz-valve
 
 

 

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China factory SS316 /304/201 1000psi 3PC Full Bore Ball Valve with ISO5211 Mounting Pad and Locking Device Bw/Sw/NPT/Bsp Bare Shaft   near me shop China factory SS316 /304/201 1000psi 3PC Full Bore Ball Valve with ISO5211 Mounting Pad and Locking Device Bw/Sw/NPT/Bsp Bare Shaft   near me shop

China Best Sales Auto Parts Spare Parts Shaft Machine Auto Parts Welding Machine Spare Parts Auto Spare Parts CNC Cutting Machine Custom Forging Machinery Processing with Best Sales

Product Description

About us

HangZhou Deli Xin Machinery (Copper) Co., Ltd. is located in the beautiful HangZhou City, Xihu (West Lake) Dis. District, Yellow River Road No. 26, close to the Qingqing, Qingyin, YHangZhou, Qingwei and other expressways. It is only 50 kilometers away from HangZhou Port and 18 kilometers away from Liuting International Airport. The advantaged geographical position has created good traffic conditions for the development of the company. Its predecessor is HangZhou CZPT Copper Factory, which is engaged in professional copper and aluminum casting. In 2571, it was transformed and upgraded into a professional machinery processing enterprise. The company has forging equipment of 300 tons of press, 160 tons of press, 125 tons of press, 100 tons of press, 35 tons of press, 100 tons of hydraulic press, 18 CNC lathes, 4 processing centers, 1 high-frequency heat treatment equipment. Mainly hot forging processing national standard and the national standard of copper products, iron products and aluminum products, production processing metric, inch, american-made copper valves, pipes and all kinds of mechanical parts and components, auto parts, after nearly 20 years of development, products are exported to the United States, the Netherlands, Israel, Russia, Italy, Australia and Hong Kong, Macao and ZheJiang and other countries and regions. These include CZPT Co.,Ltd., CZPT (Italy), and Australia’s Jenkin Ltd.

Company is the key technology, full participation, excellence, make high quality products, to do the excellent supplier of quality policy, relying on more than 20 years of forging, machining advantages, especially the experience of cooperation with many large and medium-sized enterprises at home and abroad, our company willing to build Bridges between cultures, make your profit in China, and to reduce business risks in China. We hope to establish a long-term cooperative relationship with you, and for our future full of prospects for common development.

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which 1 is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
screwshaft

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, 1 should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are 2 major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically 1 millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect 2 elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China Best Sales Auto Parts Spare Parts Shaft Machine Auto Parts Welding Machine Spare Parts Auto Spare Parts CNC Cutting Machine Custom Forging Machinery Processing   with Best SalesChina Best Sales Auto Parts Spare Parts Shaft Machine Auto Parts Welding Machine Spare Parts Auto Spare Parts CNC Cutting Machine Custom Forging Machinery Processing   with Best Sales

China supplier Customized Hot Forged Various Steel Flange Forging with high quality

Product Description

1) Big size, or size as customer request
2) Materials: Alloy steel, carbon and stainless steel
3) Process: Forged

We are a professional golden manufacturer of forging parts. Such as shaft, gear, forging ring, flange, . Normally used for wind electric generation, boat building, petrol industry, mine industry, machinery manufacturing, transmission etc. Free to contact me with drawing and detailed technical requirements.

 

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China supplier Customized Hot Forged Various Steel Flange Forging   with high qualityChina supplier Customized Hot Forged Various Steel Flange Forging   with high quality