Product Description
Product Description
ASTM A182 F304/304L F316/316L ANSI B16.5 Stainless Steel Forged Flange
1. What Is A Flange?
The flange is a part that connects between shaft and shaft and is used for connection between pipe ends; it is also useful for flanges on the inlet and outlet of equipment for connection between 2 equipment, such as reducer flange. The flange connection or flange joint refers to a detachable connection in which flanges, gaskets, and bolts are connected to each other as a set of combined sealing structures.
2. What Is A Pipe Flange?
Pipe flange refers to the flange used for piping in the pipeline installation and refers to the inlet and outlet flanges of the equipment when used on the equipment. There are holes on the flanges, and bolts make the 2 flanges tightly connected. The flanges are sealed with gaskets. The flange is divided into the threaded flange, welding flange, and clamp flange. Flanges are used in pairs, threaded flanges are used for low-pressure small diameters pipes, and welding flanges are used for high-pressure and low-pressure large diameters pipes. A gasket is added between the 2 flanges and then tightened with bolts. The thickness of flanges and the diameter and number of connecting bolts are different for different pressures.
3. What Is A Stainless Steel Flange?
Stainless steel flange, that is, the flange plate or the end flange connection piece whose body is made of stainless steel. The flanges containing stainless steel are called stainless steel flanges. Common materials are stainless steel grades 304, 304L, 316, 316L, 321, etc.
Product Parameters
In every metal application, corrosion is an important consideration. In the U.S., around $9 billion goes to handling pipeline corrosion incidences. Metals are acted upon by rust, chemicals, as well as other environmental factors. Therefore, it would be best if you chose flanges that can withstand these factors. Stainless steel becomes a perfect choice since it has a high resistance to corrosion.
Product | Stainless Steel Flange |
Type | Weld Neck Flange, Socket Weld Flange, Slip On Flange, Blind Flange, Thread Flange, Lap Joint Flange, Plate Flange, Reducing Flange, etc. |
Size | 1/2″, 3/4″, 1″, 1 1/4″, 1 1/2″, 2″, 2 1/2″, 3″, 3 1/2″, 4″, 5″, 6″, 8″, 10″, 12″, 14″, 16″, 18″, 20″, 22″, 24″, 26″, 28″, 30″, 32″, 34″, 36″, 38″, 40″, 42″, 44″, 46″, 48″ |
DN15, DN20, DN25, DN32, DN40, DN50, DN65, DN80, DN90, DN100, DN125, DN150, DN200, DN250, DN300, DN350, DN400, DN450, DN500, DN550, DN600, DN650, DN700, DN750, DN800, DN850, DN900, DN950, DN1000, DN1050, DN1100, DN1150, DN1200 | |
Material | Carbon Steel: A105/RST37.2/C22.8/Q235, etc. |
Stainless Steel: 304/304L,316/316L,321,ect. | |
Pressure | Class 150;Class 300;Class 600;Class 900;Class 1500;Class 2500 |
PN2.5;PN6;PN10;PN16;PN25;PN40;PN63;PN100;PN160;PN250;PN320;PN400 | |
Wall Thickness | Sch5s, Sch10s, Sch10, Sch20, Sch30, Sch40s, STD, Sch40, Sch60, Sch80s, XS; Sch80, Sch100, Sch120, Sch140, Sch160, XXS. |
Standard | ANSI/ASME B16.5, ANSI/ASME B16.47, DIN, JIS, GOST, UNI, etc. |
Surface Treatment | Oiled or Painting or Sandblast or Galvanized |
Application | Because the flange has good comprehensive performance, it is widely used in basic projects such as chemical industry, construction, water supply, drainage, petroleum, light and heavy industry, refrigeration, sanitation, plumbing, fire fighting, electric power, aerospace, shipbuilding, and so on. |
Service | OEM or ODM Service Available |
Packing | Wooden case, pallet or as customers’ requirement |
Delivery Items | FOB(30% down payment in advance, the balance before shipment) CIF or CRF(30% in advance, the balance against with the copy of B/L) |
Delivery Time | Within 15-45 days after receipt of advance payment |
Advantage | 1. More than 10 years of flange manufacturing experience. 2. Near ZheJiang Port and ZheJiang Airport. 3. We provide: We have high-quality processing equipment. We promise on-time, stable quality, just price, client confidentiality. 4. With samples and order: We can offer dimension reports, material certification. |
Inspection | Optical Spectrometer X-ray Detector QR-5 Fully Automatic Computer Carbon Sulfur Analyzer Measurement Tensile Test Finished Product NDT UT(Digital UItrasonic Flaw Detector) Metallographic Analysis Imaging Studies Magnetic Particle Inspection |
Detailed Photos
Company Profile
ZheJiang Fusion Fittings Manufacture Co., Ltd. is an excellent manufacturer, factory, supplier that mainly produces pipe fittings, flanges, supports, and hangers, as well as steel sleeve steel steam insulation pipelines, polyurethane prefabricated direct buried insulation pipelines and acts as an agent for the sales of steel pipes for many large enterprises such as Tiangang, HangZhou Steel, HangZhou Iron and Steel, and HangZhou Iron and Steel. The company is located in Zhenggang Development Zone, YHangZhou County, ZheJiang Province, China. It mainly provides high, medium, and low-pressure steel pipes, pipe fittings, and product sales and services for electric power, petroleum, chemical, construction, water conservancy, and other industries.
The company was founded in 2003, and the registered capital is 103,780,000. The company’s leading products are thermal insulation pipe, elbow, tee, reducer, flange, etc. The Product material can be divided into carbon steel, alloy steel, stainless steel series. It also sells carbon steel pipes, seamless steel tubes, spiral steel tubes, alloy steel tubes, stainless steel tubes, and other products.
In recent years, our company has continuously deepened its internal reform of the enterprise, innovating in the reform and developing in the innovation, and gradually formed a set of adaptive markets, with a strong competitive management mechanism. It realized the synchronization and integration with domestic and international market networks.
Other Products
Main Products
Packaging & Shipping
FAQ
Q1: Why choose Fusion?
A: Our company was established in 2003, covers an area of 200,000 square meters, with a building area of 120,000 square meters, a registered capital of 120 million, and an annual output value of more than 1 billion.
The company has 500 employees, including 25 senior titles and 50 intermediate titles.
Q2: What can we expect from Fusion?
A: Professional negotiation, reasonable price, and good after-sale service.
Q3: Can you do customized design and size?
A: Yes, OEM is available.
Q4: Can I have some samples?
A: Of course, samples are free.
Q5: When can we get samples and goods?
A: If we have stock, the samples will be sent soon, making new will take about 5 days.
Q6: How can you ensure the quality of products?
A: We have a very strict quality control system, in our factory, we have 5 quality control inspectors and each of them has many years of working experience.
Q7: Can I order a small quantity first?
A: Yes, you are welcome to try it.
Lead Screws and Clamp Style Collars
If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:
Acme thread
The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
Lead screw coatings
The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
Clamp style collars
The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
Ball screw nut
The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.