Tag Archives: precision reducer

China factory 90mm Round Flange High Precision Helical Gear AE Series Planetary Gear Reducer For Servo Motor with Good quality

Product Description

90mm Round Flange High Precision Helical Gear AE Series Planetary Gear Reducer For Servo Motor

Product Description

AE Series Planetary Gearbox additionally adds front and rear oil seals, uses the output shaft double support structure and design of helix gear, which makes the gear meshing  smoother and stable, the AE Series can be used in various control transmission fields with servo motors. The backlash of the AE series is less than 5 arc.min and the reduction ratio covers 3~100.

The Product Advantages of Planetary Gearbox:

1.Flexible structure design, in line with various working conditions.
2.Ring gear processing technology: Using internal gear slotting machine and hobbling machine; the precision of ring gear after processing can reach GB7.
3.Hardened gear secondary scraping technology: secondary high-speed dry cutting of gear eliminates gear deformation caused by heat treatment. Gear accuracy can reach GB6.
4.Reliable backlash testing.

How To Read
90    AE    10    (  )     (S) – 400   T1
 a       b      c      d        e       f       g

a    Frame Size     90=90mm
b    Series code: AE     Round mounting flange series
c    Reduction Ratio     Single Stage: 3,4,5,6,7,8,9,10;
    Two Stages: 15,20,25,30,35,40,45,50,60,70,80,90,100
d    Backlash     Single Stage: ≤5arc.min;  
    Two Stages: ≤8arc.min; 
e    Input shaft type     S: Overall locking (Omitted) (Regardless of whether the motor has a keyway);
    S1: Locking with locking ring (Regardless whether the motor has a  keyway );
    S2: Locking with keyway (Input shaft with key);
    K: With keyway
    A: Other types (Please contact with us)
f Applicable servo motor power (W),Please contact us for specific power
g Please contact us for the mounting type of the flange

 

Spesifications & Details

 

Product Type Unit Number Of Stage Reduction Ratio 90AE
Rated Output Torque N.M 1 3 85
4 95
5 105
7 93
8 83
10 70
2 12 115
15 115
16 130
20 130
25 135
32 120
35 125
40 115
50 135
64 83
80 83
100 73
Max. radial force* N 1,2 3~100 2100
Max. axial force* 1,2 3~100 1050
Full Load Efficiency % 1 3~10 ≥97%
2 15~100 ≥94%
Backlash arc.min 1 3~10 ≤5
2 15~100 ≤8

*Maximum radial force and maximum axial force, when the output is 100rpm, it acts on the center position (L/2) of the output shaft.

Dimensions (mm):

Product type No. of stage L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 D1 D2
90AE 1 151 33.7 77.3 40 36 28 4 3 40 10 Φ90 Φ70G7
2 165.5 91.8
No. of stage D3 D4 D5 D6 D7 D8 B1 H1 G1 G2 G3 Q3
1,2 ≤19G7 Φ20h7 Φ30 Φ60h7 Φ90 Φ70 6 22.5 M5×12 M6×12 M6×18 80

Details of AE series Planetary Gearbox

Mechanism

Compact output shaft mechanism

It adopts the design of output shaft integrated system, compact structure, high rigidity, and it can withstand large impact. Place the input coupling and the sun gear at the center of the output shaft to improve the concentricity of the components, thereby effectively controlling the gear clearance and improving the backlash of the whole gearbox.
 

Structure

Full needle structure

The inner bearing of the planetary gear adopts a full-needle design, the inner hole is made by a grinding process, the surface hardness is HRC60, and the cylindricity is less than 0.003mm.
 

Compared with AF Series
AF series planetary gearbox uses square through hole flange, but AE series uses round threaded flange.
For other specifications, AE series planetary gearbox is similar with AF series.

Other Model Types of AE series Planetary Gearbox
 

More products,please click here…
 

Assembly Procedure

Please follow the tips bellow to assemble the servo motor and reducer. Except for specified products, there are various dimensions of servo motors, some motors may not be CZPT to connect with flanges.Therefore, be sure to use the proper motor which is specified when place your order.

 

In Case Of Assembling A Motor Without Key

1.Take off the rubber cap, turn the input shaft, and match the head of the bolt to the hole of the rubber cap. Make sure that the fixing bolt is loosened.

2.Gradually put the motor shaft into the input shaft (Ensure that it is smoothly put in without jam.). Be careful not to be inserted with the motor tilted.

3.Attach the motor to the reducer and fasten the bolt with designated fastening torque. See Table 1.

4.Fasten the fixing bolt of the input shaft with designated fastening torque wrench, etc. See Table 2.

5.Put on the rubber cap.
 

 

Table 1

Motor Combination Bolt Fastening Torque
(N·m) (kgf·cm)
M3 1.0 10
M4 3.0 30
M5 5.8 60
M6 9.8 100
M8 19.6 200
M10 39.2 400
M12 68.6 700
M16 168 1650

Table 2

Combination Bolt Fastening Torque
(N·m) (kgf·cm)
M3 1.5 15
M4 3.5 35
M5 7.1 71
M6 12 120
M8 30 300
M10 60 612

 

Company Profile

Delivery

Our Services

1.Maintenance time & Warranty: 1 year after leaving factory 
2.Other service: Including modeling selection guide, installation guide, and problem shooting guide, etc.

FAQ

Q: What’re your main products?
A: We currently produce Brushed DC Motors, Brushed DC Gear Motors, Planetary DC Gear Motors, Brushless DC Motors, AC Motors, High Precision Planetary Gearbox and Precision Cycloidal Gearbox etc.. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of  molds are necessory to be developped which may need exact cost and design charging. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

 

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China factory 90mm Round Flange High Precision Helical Gear AE Series Planetary Gear Reducer For Servo Motor   with Good qualityChina factory 90mm Round Flange High Precision Helical Gear AE Series Planetary Gear Reducer For Servo Motor   with Good quality