Tag Archives: screw brass

China 5 Axis CNC Machining Turning parts custom OEM Brass Throttle Body Shaft for Carburetor Cycle shaft collar with set screw lowe’s

Warranty: 5 years
Applicable Industries: Manufacturing Plant, Machinery Repair Shops
Weight (KG): 0.02
Showroom Location: None
Video outgoing-inspection: Provided
Machinery Test Report: Not Available
Marketing Type: Ordinary Product
Warranty of core components: Not Available
Core Components: Engine, Motor, Pump
Structure: Spline
Material: Brass, Stainless Steel, Steel
Coatings: NICKEL
Torque Capacity: Custom
Model Number: Throttle Shaft
Service: Customized OEM CNC Machining
Inspection Equipment: Keyence IM-7000
Production Equipment: Japan STAR SB-20R Type G
Dimension: Per Customer’s Drawing
Tolerance: 0.005mm
Process: Precision Machining
Certificate: ISO9001:2015
Sample: Avaliable
Payment: TT
Shipping: Customer Inquirement
Packaging Details: 1) Inner packing: Plastic/paper wrap, bubble bag, PE foam, EPE cotton, PP bag etc.2) Outer packing: carton box, wooden case, plate etc.3) Per customer’s requirement
Port: HangZhou

Specification

Produciton Equipments:Japan CNC Swiss Type Automatic Lathe, Auto-Lathes, CNC Machining Center, Auto-milling machine, Drilling and Milling Center,Driling Machines, Laser Engraving Machine, Grinder Machines, Tapping Machine, Carving Machine and so on
Tolerance:+/-0.005mm
Surface Treatment:Zinc/Nickel/Chrome Plating, Passivation, Hardening, High Frequency,Clear Anodizing, Black Anodizing, Black OxideCoating,Degreasing, Brushing, Electronic polishing, Powder coating, Gold plating
Quality Control:100% inspection for the critical dimension
Testing Equipment:KEYENCE Image Dimension Measuring System, KMS 2D measuring Projector, Height Gage, Coordinate Measuring Machine, Hardness Tester,Video Measuring Machine, Salt Spray Tester,Slide caliper, Micrometer.
Delivery Moths:DHL,FEDEX, TNT,SF Or according to customers’ requirement
Lead time:Sample: 1~3 days after confirmation Mass Production: 15~25 days, based on order quantity
Company Profile Certifications Packing & Delivery FAQ 1) Are you factory or trading company?We are factory, so we can offer you very competitive price and very fast lead time.2) How can I get a quotation?Please provide 2D / 3D files or Samples indicates the material requirement, surface treatment and other requirements. Drawing format: IGS, .STEP, .STP, .JPEG, .PDF, .DWG, .DXF, .CAD…We will submit the quotation in 12 hours during working days. 3) Do you provide samples? Is it free or extra?Yes, just need some sample cost for setup and material cost and courier fee by buyerAnd it will be returned back when proceed into mass production. 4) Will my drawing be safe after you get it?Yes, we will not release your design to third party unless with your permission. 5) How to deal with the parts received in poor quality?All our products are QC inspected and accepted with inspection report before delivery. In case of non-conformance, please contact us immediately. We will check on the problems to find the cause. We will arrange remake your product or refund to you. 6) What is your MOQ?Trial order before mass production is welcomed. 7) What is your term of payment?40% T/T in advance, balance before shipment. Negotiable.

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are two main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on one side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between two and sixteen inches. A screw with a pointy tip has a smaller major diameter than one without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is one element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of one thread to the corresponding point on the next thread. Measurement is made from one thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in one revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are two measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are two ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with two or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are two types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China 5 Axis CNC Machining Turning parts custom OEM Brass Throttle Body Shaft for Carburetor Cycle     shaft collar with set screw lowe'sChina 5 Axis CNC Machining Turning parts custom OEM Brass Throttle Body Shaft for Carburetor Cycle     shaft collar with set screw lowe's
editor by czh

China best Customize Fine Stainless Steel Brass Self Tapping Threaded Insert Screw Nut with Best Sales

Product Description

Products Description

Business Type
 

Factory & Manufacturer

Certificate
 

ISO9001:2008 and  TS16949

Service

CNC milling & turning , sheet metal fabrication, grinding, deburring, tapping, drilling, cutting, knurling,
laser marking, wire EDM, CAM programming and outsource service

 

 

Material

Stainless Steel: 303, 304, 304L, 316, 316L, etc…
Carbon Steel: 1018, 1045, 1144, 12L14, 1215…
Aluminum: 5052, 6061-T6, 6061-T4, 6082-T6, 6063-T6…
Brass and Copper: C3602, C3604, H62, C34000
Plastic: POM, PEEK, ABS, PA66, PP, PMMA etc…
Titanium and more…

Finish
 

sandblasting, anodizing, blackening, plating, polishing, coating, knurling and more

 

Equipment
 

CNC milling machine, CNC turning machine, auto lathe, grinding machine, tapping machine, drilling machine,
laser marking machine, WEDM machine, CMM machine and more.

Drawing Format

STEP, STP, GIS, CAD, PDF ,DWG ,DXF etc or samples.

Main Products

Stamping part,cnc machine part,spring,shaft,screw and etc.

Inspect Tool

micrometer, thread gauges, calipers, pin gauge, projector, CMM, altimeter and more.

Quality Control

100% inspection

Tolerance

+/-0.01mm ~ +/-0.001mm or as per client’s needs

Surface Roughness

Ra 0.1~3.2 or as per client’s needs

Additional Service

assembly, logo engraving, surface finish, special package etc.

Customize Fine Stainless Steel Brass Self Tapping Threaded Insert Screw Nut

Production Process

Company Profile

Our company was founded in October, 2000, specializing in the production of cnc milling auto lathe,
stamping parts, springs, shafts, screws, and other metal parts. Our main products modes are
designing and proofing based on customers’ drawings or samples.

Product packaging

Certificate

Our Advantages

1.Provide OEM/ODM service and assembling service,since 2000

2.Social responsibility audit passed

3.One-stop purchasing service:Stamping parts,CNC milling parts,CNC turning parts,auto lathe parts,Springs,Shafts,fastener etc.

4.With professional engineers team can help you for projects research and development(R&D). Meanwhile we can suggest
the most suitable material and manufacturing progresses for your products to save the cost and ensure the quality and usage.

5.Product certification:RoHS,HE report available

6.Management certification:ISO/9001:2008 and TS16949 Passed
 

FAQ

1.Q: Are you a manufacture or trading company?

A: We are a China Enterprises which has 16year-manufacturer in hardware products.

2.Q: Do you provide ODM/OEM service?
A: OEM / ODM is welcome, We got a professional and creative R&D team, and customized colors are optional. From the concept to finished goods, we do all ( design, prototype reviewing, tooling and production ) in the factory.

3.Q: Where is your factory located? How can I visit it?
A: Our factory is located in HangZhou, ZheJiang , HangZhou is the Closest city from HangZhou and HangZhou, hongkong. 1 hour from HangZhou and HangZhou by car. 1.5 hours flight from Hong Kong ( 1 hour by car+0.5 hour by boat ).

4.Q: Is it possible to know how are my products going on without visiting your company?
A: We will offer a detailed production schedule and send weekly reports with digital pictures and videos which show the machining progress.

5.Q: How can I get the sample? What’s the lead time?
A: Normally will be send in 7days. If need to open new Model, need another 10-15days more.

6.Q: What’s the lead time for mass production?
A: 20-25days after down payment confirmed, can be negotiable.

7.Q: If you make poor quality goods, will you refund our fund?
A: As a matter of fact, we wont take a chance to do poor quality products. Meanwhile, we manufacture goods quality products until your satisfaction.

8.Q: How long is your delivery time?
  A: Generally it is 5-10 days if the goods are in stock, or it is 15-30days if the goods are not in stock, it is according to quantity.

9.Q: Do you provide samples? is it free or extra?
  A: Yes, we can provide samples, but need few samples charge, we need custom to do.

10.Q: What is your terms of payment?
   A: Payment=1000 USD, 30% deposite, balance before delivery, 70% balance pay before delivery.

11.Q: How to order?
   (1) You send us drawing or sample;
   (2) We carry through project assessment;
   (3) We give you a design;
   (4) You think the design is ok;
   (5) We make the sample and send it to you;
   (6) You think the sample is good then place an order and pay us 30% deposite;
   (7) We start to make the product;
   (8) When the goods is done, we deliver it to HangZhou Xihu (West Lake) Dis.;
   (9) You pay us the balance after you see the B/L Copy;
   (10) The whole order is done, thank you!!!

How to contact us?

 

  Send your inquiry Details in the Below, Click “Send” Now……

 

 

Lead Screws and Clamp Style Collars

If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:

Acme thread

The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
screwshaft

Lead screw coatings

The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
screwshaft

Clamp style collars

The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
screwshaft

Ball screw nut

The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.

China best Customize Fine Stainless Steel Brass Self Tapping Threaded Insert Screw Nut   with Best SalesChina best Customize Fine Stainless Steel Brass Self Tapping Threaded Insert Screw Nut   with Best Sales